1,419 research outputs found

    Robust fault detection for vehicle lateral dynamics: Azonotope-based set-membership approach

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this work, a model-based fault detection layoutfor vehicle lateral dynamics system is presented. The majorfocus in this study is on the handling of model uncertainties andunknown inputs. In fact, the vehicle lateral model is affectedby several parameter variations such as longitudinal velocity,cornering stiffnesses coefficients and unknown inputs like windgust disturbances. Cornering stiffness parameters variation isconsidered to be unknown but bounded with known compactset. Their effect is addressed by generating intervals for theresiduals based on the zonotope representation of all possiblevalues. The developed fault detection procedure has been testedusing real driving data acquired from a prototype vehicle.Index Terms— Robust fault detection, interval models,zonotopes, set-membership, switched uncertain systems, LMIs,input-to-state stability, arbitrary switching.Peer ReviewedPostprint (author's final draft

    Tilt angle optimization of photovoltaic panels

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The solar PV power sector in Spain has been developing at a spectacular rate in recent years. The energy cost and the dependence on fossil fuels can be reduced by improving the efficiency of photovoltaic energy production. The performance of a solar radiation conversion system is affected by a tilt angle with the horizontal plane. Thus, the photovoltaic array needs to be tilted at the correct angle to maximize the performance of the system. In this paper, we found the optimum tilt angle and applied for Barcelona, Spain, located at latitude 41o 22' 56'' North and longitude 2o 6'56'' East. The optimal tilt angle for Winter (December, January, February) is 56.46 and the optimum tilt angle for Spring (March, April, May Ls 2 .11°and the optimum tilt angle for Summer(Jun, July, August Ls 13.76° and the optimum tilt angle for Autumn (September, 2ctober, November Ls 8.1 °. finally, the annual optimum tilt angle for our latitude Ls 36.87°, ZLth thLs optimal slope angle, maximum monthly and annual solar radiation is calculated. In this way, we can increase the energy generation when achieved to maximum solar radiation. With this process, we were able to increase 10.54% of energy.Peer ReviewedPostprint (author's final draft

    Robust FDI/FTC using Set-membership Methods and Application to Real Case Studies

    Get PDF
    This paper reviews the use of set-membership methods in robust fault detection and isolation (FDI) and tolerant control (FTC). Set-membership methods use a deterministic unknown-but-bounded description of noise and parametric uncertainty (interval models). These methods aims to check the consistency between observed and predicted behavior by using simple sets to approximate the set of possible behaviors (in parameter or state space). When an inconsistency is detected a fault can be indicated, otherwise nothing can be stated. The same principle can be used to identify interval models for fault detection and to develop methods for fault tolerance evaluation. Finally, some real application of these methods will end the paper exemplifying the success of these methods in FDI/FTC.Postprint (published version

    Robust optimization based energy dispatch in smart grids considering demand uncertainty

    Get PDF
    In this study we discuss the application of robust optimization to the problem of economic energy dispatch in smart grids. Robust optimization based MPC strategies for tackling uncertain load demands are developed. Unexpected additive disturbances are modelled by defining an affine dependence between the control inputs and the uncertain load demands. The developed strategies were applied to a hybrid power system connected to an electrical power grid. Furthermore, to demonstrate the superiority of the standard Economic MPC over the MPC tracking, a comparison (e.g average daily cost) between the standard MPC tracking, the standard Economic MPC, and the integration of both in one-layer and two-layer approaches was carried out. The goal of this research is to design a controller based on Economic MPC strategies, that tackles uncertainties, in order to minimise economic costs and guarantee service reliability of the system.Postprint (author's final draft

    Economic MPC with periodic terminal constraints of nonlinear differential-algebraic-equation systems: Application to drinking water networks

    Get PDF
    © 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this paper, an Economic Model Predictive Control (EMPC) strategy with periodic terminal constraints is addressed for nonlinear differential-algebraic-equation systems with an application to Drinking Water Networks (DWNs). DWNs have some periodic behaviours because of the daily seasonality of water demands and electrical energy price. The periodic terminal constraint and economic terminal cost are implemented in the EMPC controller design for the purpose of achieving convergence. The feasibility of the proposed EMPC strategy when disturbances are considered is guaranteed by means of soft constraints implemented by using slack variables. Finally, the comparison results in a case study of the D-Town water network is provided by applying the EMPC strategy with or without periodic terminal constraints.Accepted versio

    Output-feedback model predictive control of a pasteurization pilot plant based on an LPV model

    Get PDF
    In order to optimize the trade-off between components life and energy consumption, the integration of a system health management and control modules is required. This paper proposes the integration of model predictive control (MPC) with a fatigue estimation approach that minimizes the damage of the components of a pasteurization plant. The fatigue estimation is assessed with the rainflow counting algorithm. Using data from this algorithm, a simplified model that characterizes the health of the system is developed and integrated with MPC. The MPC controller objective is modified by adding an extra criterion that takes into account the accumulated damage. But, a steady-state offset is created by adding this extra criterion. Finally, by including an integral action in the MPC controller, the steady-state error for regulation purpose is eliminated. The proposed control scheme is validated in simulation using a simulator of a utility-scale pasteurization plant.Peer ReviewedPostprint (author's final draft

    Design of parameter-scheduled state-feedback controllers using shifting specifications

    Get PDF
    In this paper,the problem of designing aparameter-scheduled state-feedback controller is investigated. The paper presents an extension of the classical regional pole placement, H2 control and H1 control problems, so as to satisfy new specifications, that will be referred to as shifting pole placement control, shifting H2 control and shifting H1 control, respectively. By introducing some parameters, or using the existing ones, the controller can be designed in such away that different values of the separameters imply different regions where the closed-loop poles are situated, or different performances in the H2 or H1 sense. The proposed approach is derived within the so-called Lyapunov Shaping Paradigm, where a single quadratic Lyapunov function is used for ensuring stability and desired performances in spite of arbitrary parameter time variation. The problem is analyzed in the continuous-time LPV case, oventhough the developed theory could be applied to LTI systems in cases when it is desired to vary the control system performances online. Results obtained in simulation demonstrate the effectiveness and the relevant features of the proposed approach.Peer ReviewedPostprint (published version

    Virtual Sensors and Actuators

    Get PDF
    This chapter introduces the design of virtual sensors and actuators using the classical eigenvalue assignment approach, widely used for the design of controllers and observers in state-space. It presents a linear matrix inequality (LMI)-based procedure. The attractiveness of this solution is that the virtual sensor/actuator technique described so far can be extended easily to work with the nonlinear systems described by convex representations, such as the linear parameter varying system. The chapter illustrates the virtual sensor and actuator approach using a well-known case study: the four-tank system. It also presents a separate formulation of virtual sensors/virtual actuators. The main advantage of the LMI-based design is the fact that it enables the extension of the virtual sensor/actuator technique to linear parameter varying systems. The chapter concludes with a presentation of the conclusions and some outlooks on the current trends of virtual sensors and actuators.acceptedVersio

    Model predictive control based on LPV models with parameter-varying delays

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a Model Predictive Control (MPC) strategy based on Linear Parameter Varying (LPV) models with varying delays affecting states and inputs. The proposed control approach allows the controller to accommodate the scheduling parameters and delay change. By computing the prediction of the state variables and delay along a prediction time horizon, the system model can be modified according to the evaluation of the estimated state and delay at each time instant. Moreover, the solution of the optimization problem associated with the MPC design is achieved by solving a series of Quadratic Programming (QP) problem at each time instant. This iterative approach reduces the computational burden compared to the solution of a non-linear optimization problem. A pasteurization plant system is used as a case study to demonstrate the effectiveness of the proposed approach.Peer ReviewedPostprint (author's final draft
    • …
    corecore